Rate Optimal Estimation for High Dimensional Spatial Covariance Matrices

نویسندگان

  • Yi Li
  • Aidong Adam Ding
  • Jennifer G. Dy
چکیده

Spatial covariance matrix estimation is of great significance in many applications in climatology, econometrics and many other fields with complex data structures involving spatial dependencies. High dimensionality brings new challenges to this problem, and no theoretical optimal estimator has been proved for the spatial high-dimensional covariance matrix. Over the past decade, the method of regularization has been introduced to high-dimensional covariance estimation for various structured matrices, to achieve rate optimal estimators. In this paper, we aim to bridge the gap in these two research areas. We use a structure of block bandable covariance matrices to incorporate spatial dependence information, and study rate optimal estimation of this type of structured high dimensional covariance matrices. A double tapering estimator is proposed, and is shown to achieve the asymptotic minimax error bound. Numerical studies on both synthetic and real data are conducted showing the improvement of the double tapering estimator over the sample covariance matrix estimator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimax Estimation of Large Covariance Matrices under l1-Norm

Driven by a wide range of applications in high-dimensional data analysis, there has been significant recent interest in the estimation of large covariance matrices. In this paper, we consider optimal estimation of a covariance matrix as well as its inverse over several commonly used parameter spaces under the matrix l1 norm. Both minimax lower and upper bounds are derived. The lower bounds are ...

متن کامل

Estimating Structured High-Dimensional Covariance and Precision Matrices: Optimal Rates and Adaptive Estimation

This is an expository paper that reviews recent developments on optimal estimation of structured high-dimensional covariance and precision matrices. Minimax rates of convergence for estimating several classes of structured covariance and precision matrices, including bandable, Toeplitz, and sparse covariance matrices as well as sparse precision matrices, are given under the spectral norm loss. ...

متن کامل

Multiple-snapshots BSS with general covariance structures: A partial maximum likelihood approach involving weighted joint diagonalization

Maximum Likelihood (ML) blind separation of Gaussian sources with different temporal covariance structures generally requires the estimation of the underlying temporal covariance matrices. The possible availability of multiple realizations (“snapshots”) of the mixtures (all synchronized to some external stimulus) may enable such estimation. In general, however, since these temporal covariance m...

متن کامل

Minimax rate-optimal estimation of high-dimensional covariance matrices with incomplete data

Missing data occur frequently in a wide range of applications. In this paper, we consider estimation of high-dimensional covariance matrices in the presence of missing observations under a general missing completely at random model in the sense that the missingness is not dependent on the values of the data. Based on incomplete data, estimators for bandable and sparse covariance matrices are pr...

متن کامل

Nonparametric Stein-type shrinkage covariance matrix estimators in high-dimensional settings

Estimating a covariance matrix is an important task in applications where the number of variables is larger than the number of observations. In the literature, shrinkage approaches for estimating a high-dimensional covariance matrix are employed to circumvent the limitations of the sample covariance matrix. A new family of nonparametric Stein-type shrinkage covariance estimators is proposed who...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017